Titanous Ions Destroy Perchlorates Joseph E. Earley, Sr. Giulio Amadei and Daniel Tofan Georgetown University Washington, DC 20057 #### Summary - Last year, in New Orleans, we reported that, in ethanolic media, Ti^{III} reduces perchlorate rather rapidly. - Evidence indicates an intermediate with two Ti^{III} centers. - We have designed catalysts based on these results. (Patent applied for.) - Development opportunities exist. #### Perchlorato-Cull complex Lewis, Hatfield, Hodgson, Inorg. Chem. 13, 1974, 147. #### Two Old Ligands #### Two New Ligands #### Ligands Influence Spectra ### Suggestions of Dinuclear Ions - Pecsok & Fletcher (*Inorg. chem. 1962, 1, 155*) observed that absorption between 730 nm and 800 nm (due to polymers?) slowly developed in Ti(III) solutions of pH 3.9. - Absorption observed in this spectral region for our systems suggests the presence of dinuclear Ti(III) species. - Absorption at 778 nm of Ti^{III} complexes followed the trend: TADP3 > CYCAPAB > DADP3 ≅ HEDTA >> Aquoion. #### The Ti^{III}L- CIO₄⁻ Reaction - With reductant in excess, the initial product is chlorate, the final product is chloride. - With perchlorate in excess, disappearance of Ti^{III} is exponential in time. - First order rate constant is proportional to perchlorate concentration. #### Acid Catalysis - Pseudo-first order rate constants increase as [H+] increases. - Curvature indicates contribution from a rate-law term second order in [H+]. k_{obs} = k₀ + k' [H+]² - At [H+] = 432 mM, rate constants (k) are: - TADP3 (158) > CYCAPAB (86) > DADP3 (48) \geq HEDTA (44) > H₂O (1) - Species that absorb strongly at 778 nm react rapidly, suggesting a dinuclear complex as intermediate. ### Acid Catalysis Is Nonlinear ### An Unusual Kinetic Feature - Each run yields a first-order rate constant. - But, strangely enough, the value of that constant increases as [Ti^{III}] increases. - A mechanism involving a dinuclear intermediate models this behavior. #### Mechanistic Model $$Ti^{III} + L \leftrightarrow Ti^{III}L$$ k_{1f}, k_{1r} $2 Ti(III)L \leftrightarrow Ti_{2}L_{2}$ k_{2f}, k_{2r} $Ti_{2}L_{2} + ClO_{4}^{-} \rightarrow ClO_{3}^{-} + \dots$ k_{3} $$k_{1f} = 1000;$$ $k_{1r} = 2000;$ $$k_{2f} = 1000;$$ $k_{2r} = 0.1;$ $k_{3} = 0.1;$ **Initial particles = 8000.** #### The Model Fits #### Synthesis of Functionalized TADP3 11,23-Dihydroxicarbonyl-25,26-dihydroxy-3, 7, 15, 19-tetraazatriciclo[19.3.1.19,13]hexacosa-1(25), 9(26), 10, 12, 21, 23-hexaene - ■13C-NMR (DMSO d_s): 168.1; 154.2; 133.1; 121.3; 120.2; 44.08; 42.00; 23.19. - •Elemental Analysis: Found: C: 32.98; N: 6.54; Br: 36.71; H: 6.95. Calculated $[C_{24}H_{34}N_4O_6*4HBr*3H_2O]$ C: 33.17; N: 6.45; Br: 36.78; H: 7.03. ### TADP3-PVA Semi-Solids* OH Semi-Solids* - Polyvinyl alcohol is the solid support of choice (<MW> 50-85 Kdal, 97% hydrolyzed) - Preliminary experiments showed that perchlorate ions are reduced by Ti(III) more rapidly in a PVA environment than in water. - TADP3-(COOH)₂ is a modified ligand suitable to be covalently bound to the support. ### Attachment of TADP3DC to PVA ## Assay of Functionalization of PVA - Spectrophotometric determination of substituted benzene rings (λ_{max} = 298 nm) is a rapid and reproducible method to assay the degree of PVA functionalization (~10%) - Cross-linking of PVA chains is likely to occur, due to the presence of two p-COOH groups on the ligand. #### Results - Ti^{III} is stable in the presence of PVA (in .2M acid) for more than two weeks. - Ti^{III} reacts with perchlorate more than two orders of magnitude faster in the presence of PVA than in its absence. - The PVA surface environment favors reaction. ### Heterogeneous Catalysis - In .2 M acid ,Ti^{III} absorbed on ligand-modified PVA, reacts with perchlorate *more than two orders of magnitude faster* than does Ti^{III} absorbed on PVA. - Ti^{III} is in excess over ligand. - The PVA-fixed ligand is an effective catalyst. ### A New Chemical Principle Ligands that favor dinuclear complex-formation, when attached to a semisolid support with an alcohol-like surface, act as effective catalysts for reduction of perchlorate ions by Ti^{III}. • The sample system increases rate > 10000 fold. #### **Prospects** - Ti^{IV} can be reduced to Ti^{III} - chemically - electro-chemically - photo-chemically - Flow and batch systems can be developed to use this new chemical principle for destruction of perchlorates. #### Advantages - Titania (TiO₂) is cheap, abundant and environmentally benign. - Optimization of ligand, support-system, and regeneration method can yield rapid, cheap, and safe methods of perchlorate disposal. #### **Contact Information** - Kelli Watson, esq. Technology Development Serv. Georgetown University Washington, DC 20057 Watsonk @georgetown.edu (phone: 202-687-8583) - Joseph E. Earley, Sr., Department of Chemistry, Georgetown University earleyj@georgetown.edu (phone 202-687-5591)